Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 66: 101614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244663

RESUMO

OBJECTIVE: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.


Assuntos
Insulina , Receptor de Insulina , Animais , Camundongos , Ratos , Channelrhodopsins/metabolismo , Comportamento Alimentar , Hiperfagia/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Rombencéfalo/metabolismo
2.
Psychoneuroendocrinology ; 131: 105284, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090139

RESUMO

The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.


Assuntos
Peso Corporal , Comportamento Alimentar , Hipotálamo , Interleucina-6 , Motivação , Animais , Peso Corporal/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Hipotálamo/metabolismo , Interleucina-6/fisiologia , Masculino , Motivação/fisiologia , Ratos
3.
Cell Rep ; 26(11): 3011-3026.e5, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865890

RESUMO

Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6.


Assuntos
Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Interleucina-6/metabolismo , Núcleos Parabraquiais/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Interleucina-6/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia , Hormônios Tireóideos/metabolismo
4.
Mol Metab ; 20: 178-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528281

RESUMO

OBJECTIVE: The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control. METHODS: Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats. RESULTS: SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats. CONCLUSION: Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei.


Assuntos
Gânglios da Base/metabolismo , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Motivação , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Condicionamento Operante , Metabolismo Energético , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
5.
Am J Physiol Endocrinol Metab ; 313(3): E344-E358, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28588096

RESUMO

Pharmacological ß3-adrenergic receptor (ß3AR) activation leads to increased mitochondrial biogenesis and activity in white adipose tissue (WAT), a process commonly referred to as "browning", and transiently increased insulin release. These effects are associated with improved metabolic function and weight loss. It is assumed that this impact of ß3AR agonists is mediated solely through activation of ß3ARs in adipose tissue. However, ß3ARs are also found in the brain, in areas such as the brain stem and the hypothalamus, which provide multisynaptic innervation to brown and white adipose depots. Thus, contrary to the current adipocentric view, the central nervous system (CNS) may also have the ability to regulate energy balance and metabolism through actions on central ß3ARs. Therefore, this study aimed to elucidate whether CNS ß3ARs can regulate browning of WAT and other aspects of metabolic regulation, such as food intake control and insulin release. We found that acute central injection of ß3AR agonist potently reduced food intake, body weight, and increased hypothalamic neuronal activity in rats. Acute central ß3AR stimulation was also accompanied by a transient increase in circulating insulin levels. Moreover, subchronic central ß3AR agonist treatment led to a browning response in both inguinal (IWAT) and gonadal WAT (GWAT), along with reduced GWAT and increased BAT mass. In high-fat, high-sugar-fed rats, subchronic central ß3AR stimulation reduced body weight, chow, lard, and sucrose water intake, in addition to increasing browning of IWAT and GWAT. Collectively, our results identify the brain as a new site of action for the anorexic and browning impact of ß3AR activation.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Peso Corporal/efeitos dos fármacos , Dioxóis/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Animais , Linhagem Celular , Sistema Nervoso Central , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Secreção de Insulina , Iodeto Peroxidase/genética , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Proteína Desacopladora 1/genética , Iodotironina Desiodinase Tipo II
6.
Diabetes ; 66(4): 1062-1073, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057699

RESUMO

Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.


Assuntos
Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Serotonina/metabolismo , Aminopiridinas/farmacologia , Animais , Anorexia , Exenatida , Comportamento Alimentar/efeitos dos fármacos , Fenclonina/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Indóis/farmacologia , Liraglutida/farmacologia , Masculino , Peptídeos/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Peçonhas/farmacologia , Redução de Peso/efeitos dos fármacos
7.
J Gene Med ; 18(7): 124-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27203155

RESUMO

BACKGROUND: Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. METHODS: Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. RESULTS: Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. CONCLUSIONS: SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Doxorrubicina , Ecocardiografia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Coração/fisiopatologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Humanos , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA